
Technical Report #UMIACS-TR-2000-09, Institute for Advanced Computer Studies,
University of Maryland at College Park, March, 2000.
Contention-conscious Transaction Ordering in Embedded
Multiprocessors Systems1

Mukul Khandelia, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland, College Park

Abstract

This paper explores the problem of efficiently ordering interprocessor communication

operations in statically-scheduled multiprocessors for iterative dataflow graphs. In most digital

signal processing applications, the throughput of the system is significantly affected by communi-

cation costs. By explicitly modeling these costs within an effective graph-theoretic analysis

framework, we show that ordered transaction schedules can significantly outperform self-timed

schedules even when synchronization costs are low. However, we also show that when communi-

cation latencies are non-negligible, finding an optimal transaction order given a static schedule is

an NP-complete problem, and that this intractability holds both under iterative and non-iterative

execution. We develop new heuristics for finding efficient transaction orders, and perform an

experimental comparison to gauge the performance of these heuristics.

1. Background

This paper explores the problem of efficiently ordering interprocessor communication

(IPC) operations in statically-scheduled multiprocessors for iterative dataflow specifications. An

iterative dataflow specification consists of a dataflow representation of the body of a loop that is

1. This research was sponsored by the US National Science Foundation (CAREER, MIP9734275); and the
Army Research Laboratory under Contract No. DAAL01-98-K-0075, and the MICRA program.
1 of 34

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Contention-conscious Transaction Ordering in Embedded
Multiprocessors Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Electrical and Computer
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

34

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

to be iterated indefinitely. Dataflow programming in this form is used widely in the design and

implementation of digital signal processing (DSP) systems.

In this paper, we assume that we are given a dataflow specification of an application, and

an associated multiprocessor schedule (e.g., derived from scheduling techniques such as those

presented in [6, 9, 18, 22]). Our objective is to reduce the overall IPC cost of the multiprocessor

implementation, and the associated performance degradation, since IPC operations result in sig-

nificant execution time and power consumption penalties, and are difficult to optimize thoroughly

during the scheduling stage. IPC is assumed to take place through shared memory, which could be

global memory between all processors, or could be distributed between pairs of processors (e.g.,

hardware first-in-first-out queues or dual ported memory). Such simple communication mecha-

nisms, as opposed to cross bars and elaborate interconnection networks, are common in embed-

ded systems, due to their simplicity and low cost.

1.1 Scheduling dataflow graphs

Our study of multiprocessor implementation strategies in this paper is in the context of

homogeneous synchronous dataflow (HSDF) specifications. In HSDF, an application is repre-

sented as a directed graph in which vertices (actors) represent computational tasks of arbitrary

complexity; edges (arcs) specify data dependencies; and the number of data values (tokens) pro-

duced and consumed by each actor is fixed. An actor executes (fires) when it has enough tokens

on its input arcs, and during execution, it produces tokens on its output arcs. HSDF imposes the

restriction that on each invocation, each actor consumes exactly one token from each input arc,

and produces one token on each output arc. HSDF and closely-related models are used exten-

sively for multiprocessor implementation of embedded signal processing systems (e.g., see [6, 10,

11, 12]). We refer to an HSDF representation of an application as an application graph.
2 of 34

For multiprocessor implementation of dataflow graphs, actors in the graph need to be

scheduled. Scheduling can be divided into three steps [13] — assigning actors to processors (pro-

cessor assignment), ordering the actors assigned to each processor (actor ordering), and deter-

mining when each actor should commence execution. All of these tasks can either be performed at

run-time or at compile time to give us different scheduling strategies. To reduce run-time over-

head and improve predictability, it is often desirable in embedded applications to carry out as

many of these steps possible at compile time [13].

Typically, there is limited information available at compile time since the execution times

of the actors are often estimated values. These may be different from the actual execution times

due to actors that display run-time variation in their execution times because of conditionals or

data-dependent loops within them, for example. However, in a number of important embedded

domains, such as DSP, it is widely accepted that execution time estimates are reasonably accurate,

and that good compile-time decisions can be based on them. In this paper, we focus on scheduling

methods that extensively make use of execution time estimates, and perform the first two steps —

processor assignment and actor ordering — at compile time.

In relation to the scheduling taxonomy of Lee and Ha [13], there are three general strate-

gies with which we are primarily concerned in this paper. In the fully-static (FS) strategy, all three

scheduling steps are carried out at compile time, including the determination of an exact firing

time for each actor. In the self-timed (ST) strategy, on the other hand, processor assignment and

actor ordering are performed at compile time, but run-time synchronization is used to determine

actor firing times: an ST schedule executes by firing each actor invocation as soon as it can be

determined via synchronization that the actor invocations on which is dependent have all com-

pleted execution.

A

A

3 of 34

The FS and ST methods represent two extremes in the class of scheduling algorithms con-

sidered in this paper. The ST method is the least constrained scheme since the only constraints are

the IPC dependencies, and it is tolerant of variations in execution times, while the FS strategy

only works when tight worst case execution times are available, and forces system performance to

conform to the available worst case bounds. When we ignore IPC costs, the ST schedule conse-

quently gives us a lower bound on the average iteration period of the schedule since it executes in

an ASAP (as soon as possible) manner.

The ordered transaction (OT) method [11, 23] falls in-between these two strategies. It is

similar to the ST method but also adds the constraint that a linear ordering of the communication

actors is determined at compile time, and enforced at run-time. The linear ordering imposed is

called the transaction order of the associated multiprocessor implementation.

The FS and OT strategies have significantly lower overall IPC cost since all of the

sequencing decisions associated with communication are made at compile time. The ST method,

on the other hand, requires more IPC cost since it requires synchronization checks to guarantee

the fidelity of each communication operation — that is, to guarantee that buffer underflow and

overflow are consistently avoided. Significant compile-time analysis can be performed to stream-

line this synchronization functionality [3, 4].

The metric of interest to us in this paper is the average iteration period . Intuitively, in

an iterative execution of a dataflow graph, the iteration period is the number of cycles that it takes

for each of the actors in the graph to execute exactly once — i.e., to complete a single graph itera-

tion. Note that it is not necessary in a self-timed schedule for the iteration period to be the same

from one graph iteration to the next, even when actor execution times are fixed [24]. The inverse

of the average iteration period gives us the throughput , which is the average number of

T

T T 1–
4 of 34

graph iterations carried out per unit time.

1.2 Terminology and notation

We denote the set of positive integers by , the set of natural numbers by

, and the number of elements in a finite set by .

With each actor in an HSDF specification , we associate an integer ,

which denotes the execution time estimate of , and an integer , which denotes the pro-

cessor that is assigned to in the assignment step. Each edge has a non-negative

integer delay associated with it, which is denoted by . These delays represent initial

tokens, and specify dependencies between iterations of actors in iterative execution. For example,

if the tokens produced by an actor on its th invocation are consumed by actor on its

th invocation, the edge between and would have a delay of 2.

Every edge induces the precedence constraint

, (1)

where denotes the starting time of the invocation of an actor . Here,

 is set to for as initial conditions.

A path in a directed graph is a finite sequence , where each is in

, and , for . We say that the path is

directed from to . A path that is directed from some vertex to itself is called a

cycle. Given a path , the path delay of , denoted , is given by

. (2)

Each cycle in a dataflow graph must satisfy to avoid deadlock.

The evolution of a self-timed implementation can be modeled by Sriram’s IPC graph

Z+ 0 1 2 …, , ,{ }

ℵ S S

v V∈ V E,() exec v()

v proc v()

v vi vj,() E∈

vi vj,()delay

vi k vj

k 2+() vi vj

vi vj,()

start vj k,() start vi k vi vj,()delay–,() t vi()+≥

start x k,() Z+∈ kth x

start vi() 0 k 0≤

V E,() e1 e2 … en, , ,() ei

E ei()snk ei 1+()src= i 1 2 … n 1–(), , ,= e1 e2 … en, , ,()

e1()src en()snk

p e1 e2 … en, , ,()= p p()Delay

p()Delay ei()delay
i 1=

n

∑=

c c()Delay 0>
5 of 34

model [24]. Given an application graph and an associated self-timed schedule, the IPC graph,

denoted , is constructed by instantiating a vertex for each application graph actor, connecting

an edge from each actor to the actor that succeeds it on the same processor, and adding an edge

that has unit delay from the last actor on each processor to the first actor on the same processor.

Also, for each application graph edge that connects actors that execute on different proces-

sors, an inter-processor edge is instantiated in from to . A sample application graph and

a self-timed schedule are illustrated in Figure 1, and the corresponding IPC graph is illustrated in

Figure 2.

IPC costs (estimated transmission latencies through the multiprocessor network) can be

incorporated into the IPC graph model by explicitly including communication (send and receive)

actors, and setting the execution times of these actors to equal the associated IPC costs.

The IPC graph is an instance of Reiter’s computation graph model [20], also known as the

timed marked graph model in Petri net theory [19], and from the theory of such graphs, it is well

known that in the ideal case of unlimited bus bandwidth, the average iteration period for the

ASAP execution of an IPC graph is given by the maximum cycle mean (MCM) of , which is

Figure 1. An example of an application graph and an associated self-timed schedule. The
numbers on the edges and denote nonzero delays.6 8,() 6 9,()

2

3

1

4

6

5

7

8

9

2

3

Self-Timed Schedule

Proc 1: (1, 2, 3, 4, 6)

Proc 2: (5, 7, 8)

Proc 3: (9)

Gipc

x y,()

Gipc x y

Gipc
6 of 34

defined by

. (3)

The quotient in (3) is referred to as the cycle mean of the associated cycle .

A similar data structure that is useful in analyzing OT implementations is Sriram’s ordered

transaction graph model [24]. Given an ordering for the communication

actors in an IPC graph , the corresponding ordered transaction graph

 is defined as the directed graph, where ,

,

, (4)

 for , and . Thus, an IPC graph can be modified

by adding edges obtained from the ordering to create the ordered transaction graph.

2. Previous work

In [23, 24], Sriram and Lee discuss some of the advantages and disadvantages of the OT

strategy compared to the ST strategy — in particular, lower synchronization and arbitration costs

for the IPC mechanism at the expense of some run-time flexibility. They also develop a method to

compute an optimum transaction order when a fully-static schedule is given beforehand. In this

approach, a set of inequalities is constructed using the timing information of the given FS sched-

ule, and represented as a graph. The Bellman-Ford shortest path algorithm is applied to this graph

to obtain new starting times of the actors, thereby modifying the original FS schedule. A transac-

tion order is then obtained by sorting the starting times of the communication actors. We shall

MCM Gipc() max
cycle C in Gipc

exec v()
v C∈
∑

C()Delay

=

C

O o1 o2 …op, ,{ }=

Gipc Vipc Eipc,()=

Γ Gipc O(,) GOT VOT EOT,()= VOT Vipc=

EOT Eipc EO∪=

EO op o1(,) o1 o2(,) o2 o3(,) … op 1– op(,), , , ,{ }=

oi oi 1+,()delay 0= 1 i p<≤ op o1,()delay 1=

O

7 of 34

term this method of finding the transaction orders, which is an efficient polynomial-time algo-

rithm, the Bellman Ford Based (BFB) method. Under an assumption that the cost (latency) of IPC

is zero, Sriram shows that the transaction order determined by the BFB technique is always opti-

mum.

However, in this paper, we show that when IPC costs are not negligible, as is frequently

and increasingly the case in practice, the problem of determining an optimal transaction order is

NP-hard. Thus, under nonzero IPC costs, we must resort to heuristics for efficient solutions. Fur-

thermore, the polynomial-time BFB algorithm is no longer optimal, and alternative techniques

that account for IPC costs are preferable.

Numerous approaches have been proposed for incorporating IPC costs into the assignment

and ordering steps of scheduling (e.g., [2, 22]). The techniques that we propose in this paper are

complementary to these approaches in that they provide a means for mapping the resulting sched-

ules into efficient OT implementations, which eliminate the performance and power consumption

overhead associated with run-time synchronization and contention resolution.

3. Comparison of self-timed and ordered transaction strategies

Given an application graph, an associated multiprocessor schedule, and an FS implemen-

tation, an OT implementation, and an ST implementation for the schedule, suppose , ,

and , respectively, denote the average iteration periods of the corresponding schedules. In

general, when IPC costs are negligible, [24]. This is because the ST method has

the least constraints. The ST schedule only has assignment and ordering constraints, while the OT

schedule has transaction ordering constraints in addition to those constraints, and the FS schedule

has exact timing constraints that subsume the constraints in the ST and OT schedules. ST sched-

ules overlap in a natural manner, and eventually settle into a periodic pattern of iterations. This

TFS TOT

TST

TFS TOT TST≥ ≥
8 of 34

pattern can be exponential in size, and therefore, the ST schedule has the advantage that in succes-

sive iterations, the transaction order may be different, while this flexibility is not available for the

OT and FS schedules.

In practical cases, however, the IPC cost is non-zero. Depending on the bandwidth of the

bus, IPC costs may be quite significant. The throughput of the ST schedule can be computed eas-

ily when IPC costs are ignored by calculating the MCM of the corresponding dataflow graph (i.e.,

via (3)). However, when IPC costs are taken into account, this can no longer be done since the

notion of bus contention comes into the picture. Not only do the communication actors in the

dataflow graph have to wait for sufficient tokens on the input arcs to fire, they also have to wait

for the bus to be available — i.e., no other communication actor should be accessing the bus at the

same instant of time. Therefore, the throughput of the self-timed schedule is typically derived

using simulation techniques, which are time-consuming. On the other hand, the throughput of the

OT schedule can still be obtained by calculating the MCM of the transaction order graph since

there will be no bus contention when a linear order is imposed on the communication actors [23].

The relation is also no longer valid in the presence of non-zero IPC

costs. To see why this is true, assume that two communication actors become enabled (have suffi-

cient input tokens to fire) at more or less the same time. Then the ST method will schedule the

communication actor that becomes enabled earlier. Doing this may result in a lower throughput

since, for example, the processor that contains the communication actor that is scheduled later

might be more heavily loaded. The FS and the OT methods avoid such pitfalls by analyzing the

schedules at compile time, and producing an exact firing time assignment, or a transaction order

that takes the entire schedule into consideration. Intuitively, the ST method follows a more

greedy, ASAP approach in choosing which communication actor to schedule next, and this can

TFS TOT TST≥ ≥
9 of 34

result in inefficient execution patterns.

Example 1: To illustrate how an ST schedule might perform worse than an OT schedule, con-

sider the IPC graph of Figure 2. Dashed edges represent inter-processor data dependencies. Num-

bers beside actors show their execution times, numbers beside edges indicate nonzero delays, xsy

denotes the yth send actor of computation actor x, and xry denotes the yth receive actor of x. Fig-

ure 3 shows the periodic pattern that the ST schedule eventually settles down into. Although Pro-

cessor 1 is most heavily loaded, we see that there are instances when the processor is idling

waiting for the bus to become free. In contrast, when the transaction order

2r1

4

4s2

4s3

7r1

8r1

3

7

15

9

5

5

4

9

6

3

4

6

5

3

5

5

Proc 2 Proc 3Proc 1

1

1

1

2

3

91

2

3

4s1

6

5

5s1

7

8

9r1

9

Figure 2. IPC graph constructed from application graph of Figure 1.
10 of 34

 is enforced (Figure 4), an 11% lower average iteration

period results. This is because the transaction order is computed in a fashion that enables the

heavily loaded Processor 1 to access the bus whenever it requires it. Such an ability to prioritize

strategically-selected transactions is especially important in heterogeneous multiprocessors,

which often have imbalanced loads due to large variations in processing capabilities of the com-

puting resources.

The ST approach has the further disadvantage that in the presence of execution time

uncertainties, there is no known method for computing a tight worst-case iteration period, even

using simulation techniques. In particular, the period of the ST schedule obtained by using worst

5s1 2r1 7r1 4s1 4s2 4s3 8r1 9r1, , , , , , ,()

�����������
�����������
�����������

�������������
�������������
��

���
���
��

���
���

����������������������
����������������������
����������������������

1 2 3 4 6

5 7 8

9

iteration period = 74

0 10 16 23 38 47 57 66 7562

5s17r1

9r1

8r1

6s1 6s2 6s32r1

����������
���������� - idle

Figure 3. Gantt Chart for ST schedule in Example 1.

���������
���������
���������

��
��
��

��
��
��

1 2 3 4 6

5 7 8

9

iteration period = 66

0 9 12 19 34 43 48 53 57 66

7r15s1

2r1
6s1 6s2 6s2

8r1

9r1

��������
�������� - idle

Figure 4. Gantt Chart for OT schedule in Example 1.
11 of 34

case execution time estimates of the actors does not necessarily give us the worst case iteration

period of a schedule. This can prove to be a big disadvantage in real-time systems where worst-

case bounds are needed beforehand.

Example 2: Consider the IPC graph of Figure 5, and suppose that Actor 1 has a worst-case exe-

cution time of 21, and a best case execution time of 19. Figure 6 shows the ST schedule that

results when actor 1 has an execution time of 21. An iteration period of 50 is obtained. However,

when the same schedule is simulated for an execution time of 19, we obtain an iteration period of

59 as shown in Figure 7 .

1

4

2

3

3s1

20

10

20

0

19-21

10

0

0

1

Proc 1 Proc 2

1 1

1s1

4r1

2s1

Figure 5. IPC graph for Example 2.

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

2 3

1

iteration period = 50

21 30 40 50

3r1

1s1

Figure 6. Gantt Chart for ST schedule when exec(1)=21.
12 of 34

In contrast, the iteration period obtained by computing the MCM of the ordered transac-

tion graph with worst-case actor execution times is the worst-case iteration period. This is because

the MCM is an accurate measure of performance for ordered transaction implementations [23,24],

and the MCM can only increase or remain the same when the execution time of an actor is

increased.

4. Finding optimal transaction orders

In the transaction ordering problem, our objective is to determine a transaction order

for a given IPC graph such that the MCM of the resulting ordered transaction graph is minimized

(so that throughput is maximized). As mentioned in Section 2, it has been shown that this problem

is tractable when IPC costs are ignored. In this section, we show that when IPC costs are consid-

ered, the transaction ordering problem becomes NP-complete.

We show this by first showing that determining an optimal transaction order for non-itera-

tive implementations, which is a more restricted (easier) problem, is NP-complete. To convert an

iterative IPC graph to a non-iterative one, it suffices to remove all edges in the graph that have

delays of one or more. This results in an acyclic graph since any cycle in the original graph must

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

��
��
��
��
��

1

2 3

iteration period = 59

19 29 39 59

1s1

3r1

Figure 7. Gantt Chart for ST schedule with exec(1)=19.

O

13 of 34

have a delay of one or more for the graph not to be deadlocked.

Definition 1: Given an IPC graph , the associated non-iterative inter-processor

communication (NIPC) graph is defined as where

.

Definition 2: Given an NIPC graph , and an ordering , the corresponding

non-iterative ordered transaction (NOT) graph is defined as

, where , , and is as

defined in (4).

By definition, the total execution time (makespan) of a NOT graph is finite, and

this execution time can be determined in polynomial time — as the length of the longest cumula-

tive-execution-time path in — since is acyclic and the execution times of all actors

are nonnegative. However, given an IPC graph, finding a transaction order that minimizes the

makespan of the associated NOT graph is intractable.

Definition 3: The non-iterative transaction ordering problem is defined as follows. Given an

NIPC graph , and a positive integer , does there exist a transaction order

 such that has a makespan that is less than or equal to

?

To show that non-iterative transaction ordering is NP hard, we derive a reduction from the

sequencing with release times and deadlines (SRTD) problem, which is known to be NP-complete

[8]. The SRTD problem is defined as follows.

Definition 4: (The SRTD problem). Given an instance set of tasks, and for each task , a

length (duration) , a release time , and a deadline , is there a single-

Gipc V E,()=

Gnipc V Enipc,()=

Enipc e e E∈ e()delay 0=()and(){ }=

Gnipc V Enipc,()= O

GNOT Π Gnipc O,()=

GNOT VNOT ENOT,()= VNOT V= ENOT Enipc EO∪() op o1,(){ }–= EO

GNOT

GNOT GNOT

Gnipc V Enipc,()= k

O o1 o2 …on, ,{ }= GNOT Π Gnipc O,()=

k

T t T∈

l t() ℵ∈ r t() ℵ∈ d t() ℵ∈
14 of 34

processor schedule for that satisfies the release time constraints and meets all the deadlines?

That is, is there a one-to-one function (called a valid SRTD schedule) , with

, and for all , , and ?

Theorem 1: The non-iterative transaction ordering problem is NP-complete.

Proof: This problem is clearly in NP since we can verify in polynomial time whether the longest

path length (in terms of cumulative execution time) of the graph is less than or equal to a given

positive integer.

Now suppose that we are given an instance of the SRTD problem with

. We construct an NIPC graph from this instance by carrying out the fol-

lowing steps. Here, all edges instantiated are delayless unless otherwise specified, and is equal

to the maximum deadline of the tasks in the given instance of the STRD problem.

For each ,

i) instantiate a send actor when is odd, or a receive actor when is even with

 and .

ii) instantiate a computation actor with and .

iii) instantiate a computation actor with and .

iv) instantiate an edge and another edge .

Each send actor is connected to the receive actor by an interprocessor edge

 with a delay of unity. Since each of the interprocessor edges has a delay of unity, these

edges are not present in . Without loss of generality, we assume that there are an even num-

ber of tasks, so that the number of send and receive actors is the same (if the number of tasks is

not even to begin with, we can instantiate an appropriately-defined dummy actor to generate an

equivalent “even-task” instance). Observe from our construction that from the tasks in the

T

σ T ℵ→:

σ t() σ t′()>() σ t() σ t′() l t′()+≥()⇒ t T∈ σ t() r t()≥ σ t() l t()+ d t()≤

T r l d, , ,()

T t1 t2…tp,{ }= Gnipc

k

ti T∈

ui i ui i

exec ui() l ti()= proc ui() i=

mi exec mi() r ti()= proc mi() i=

ni exec ni() k d ti()–= proc ni() i=

mi ui,() ui ni,()

ui ui 1+

ui ui 1+,()

Gnipc

p

15 of 34

given instance of the SRTD problem, we construct a graph that involves processors,

communication actors, computation actors, and edges.

Claim: If there exists a transaction order for that will have a makespan

that is less than or equal to , then there exists a valid SRTD schedule for the given instance of the

SRTD problem.

The reasoning behind our construction and the above claim is that we make the communi-

cation actors of the ordered transaction graph correspond exactly to the tasks of the STRD prob-

lem. We do this by making the execution time of the computation actor before each corresponding

communication actor equal to the release time of the associated task and, thus, guarantee that the

communication actors cannot begin execution before their respective release times. Also since

computation actors will begin execution from time 0 as each is on a different processor, the

release times correspond to when they complete execution. Similarly, the execution time of the

computation actors that follow the communication actors are chosen to be so that the

corresponding communication actors will have to complete their execution before for the

makespan to be less than or equal to . This is true because the computation actor can begin exe-

cution immediately after the communication actor has finished. Therefore, the valid SRTD sched-

ule corresponds exactly to the shared bus schedule in the derived instance of the non-iterative

transaction ordering problem. If we can find a transaction order that has a makespan less than or

equal to , we have a bus schedule that schedules the communication actors in the same manner

as an appropriate single-processor schedule for the corresponding SRTD tasks. Conversely, if a

transaction order cannot be found that satisfies the given makespan constraint, it is easily seen that

there is no valid SRTD schedule for the given instance of the SRTD problem. Q.E.D.

Note that in Theorem 1, we have simplified the problem greatly by assuming the inter-pro-

Gnipc p p

2p 2p

O GNOT Π Gnipc O,()=

k

k d ti()–

d ti()

k

k

16 of 34

cessor edges to have unit delays. This removes the inter-dependencies that are imposed by these

edges, but even with this simplification, the problem remains NP-complete.

Example 3: Suppose that we are given an instance of the SRTD problem with task set

; and respective release times , lengths

, and deadlines . To construct an instance of the non-

iterative transaction ordering problem with , we create 4 processors, each with 3 vertices.

The execution times are determined from above — e.g., , , . The resulting

NOT graph is illustrated in Figure 8. Dash-dot edges indicate OT edges. Removing the dash-dot

edges that represent the transaction order edges gives us the NIPC graph constructed from above.

This figure shows a transaction order where the schedule length of 11 is satisfied.

This means that there exists a valid SRTD schedule for the given SRTD problem instance. The

start times of the tasks can be obtained by finding the longest path lengths between the source

nodes and the corresponding communication actors. Setting the starting times of the tasks

 to equal , respectively, we obtain a valid SRTD schedule for the SRTD

problem instance.

T t1 t2 t3 t4, , ,{ }= r T() 0 4 5 6, , ,{ }=

l T() 5 2 3 1, , ,{ }= d T() 5 8 11 8, , ,{ }=

k 11=

u1 5= m1 0= n1 6=

u1 u2 u4 u3, , ,()

t1 t2 t3 t4, , ,() 0 5 8 7, , ,()

0

5

6

4

2

3

5

3

0

6

1

3

Proc 1 Proc 2 Proc 3 Proc4

u1

n1

m1 m2

u2

n2

m3

u3

n3

m4

u4

n4

Figure 8. NOT Graph constructed in Example 3.
17 of 34

As demonstrated by the Theorem 2 below, we can extend the proof of Theorem 1 to show

that the transaction ordering problem is NP-complete in the iterative context as well as the non-

iterative case.

Definition 5: The iterative transaction ordering problem (also called the transaction ordering

problem) is defined as follows. Given an IPC graph and a positive integer , does there exist

a transaction order such that satisfies ?

Theorem 2: The iterative transaction ordering problem is NP-complete.

Proof: The MCM can be found in polynomial-time, therefore, the problem is in NP.

To establish NP-hardness, we again derive a reduction from the SRTD problem, and we

modify the graph construction from the proof of Theorem 1 so that the MCM equals the

makespan.

Now suppose we are given an instance of the SRTD problem with

. We construct an IPC graph from this instance by carrying out the follow-

ing steps. All edges instantiated are delayless unless otherwise specified, and is equal to the

maximum deadline of the tasks in the given instance of the STRD problem.

For each ,

i) instantiate a send actor when is odd, or a receive actor when is even with

 and .

ii) instantiate a computation actor with and .

iii) instantiate a computation actor with and .

iv) instantiate an edge and another edge .

v) instantiate a send actor with and .

vi) instantiate a receive actor with and .

Gipc k

O GOT Γ Gipc O,()= MCM GOT() k≤

T r l d, , ,()

T t1 t2…tp,{ }= Gipc

k

ti T∈

ui i ui i

exec ui() l ti()= proc ui() i=

mi exec mi() r ti()= proc mi() i=

ni exec ni() k d ti()–= proc ni() i=

mi ui,() ui ni,()

si exec si() 0= proc si() i=

ri exec ri() 0= proc ri() i=
18 of 34

vii) instantiate a computation actor with and .

viii) instantiate an edge , an edge , and another edge .

ix) instantiate another receive actor with and (recall

that).

x) instantiate another send actor with and .

xi) instantiate an (interprocessor) edge and another edge .

After completing all the above, join all with edges in a linear chain, instantiate a com-

putation actor with and , instantiate edges and

and again join all with edges in a linear chain. Finally for each of the processors, add

an edge with a delay of unity from the last actor on the processor to the first actor.

We again assume without loss of generality that there is an even number of tasks in .

Each send actor is connected to the receive actor with an interprocessor edge of unit

delay. Note that in the OT graph , these interprocessor edges become redundant (in the

sense of synchronization redundancy, as discussed in [3]) because of the ordered transaction

edges added due to : since the ordered transaction edges are connected by a cycle of delay

unity, the constraints imposed by are automatically met by the ordered transaction

edges.

This graph effectively represents a blocked schedule for an iterative graph when the exe-

cution times of the actors that have been instantiated after step v) have execution times that are

much less than the execution times of the other actors, and the MCM of the constructed graph rep-

resents the longest path or the schedule length of the graph. Note that each of the longest paths in

the non-iterative graph will correspond to a cycle in the iterative case, where the cycle mean of the

cycle is equal to the longest path (since the denominator of the associated quotient in (3) is unity).

di exec di() 0= proc di() i=

ni si,() si ri,() ri di,()

qi exec qi() 0= proc qi() p 1+=

p T=

wi exec wi() 0= proc wi() p 1+=

si qi,() wi ri,()

qis

h exec h() 0= proc h() p 1+= qp h,() h w1,()

wis p 1+

T

ui ui 1+

Γ Gipc O,()

O

ui ui 1+,(){ }
19 of 34

Similarly, as in the non-iterative case, it is possible to find a one-processor schedule of the STRD

instance that satisfies the constraints if we can determine a transaction order whose enforcement

will guarantee that the MCM of the corresponding OT graph is less than or equal to . This is true

because the communication actors that have non-zero IPC cost in the bus schedule of the OT

problem correspond to the tasks in the valid schedule of the STRD problem.

Hence, we can conclude that the (iterative) transaction ordering problem is NP-complete.

Q.E.D.

k

1
1 1 1 1

0

5

6

0

0

0

4

2

3

0

0

0

5

3

0

0

0

0

6

1

3

0

0

0

0

0

0

0

0

0

0

0

0

1

m1

u1

n1

s1

r1

m2

u2

n2

s2

r2

m3

u3

n3

s3

r3

m4

u4

n4

s4

r4

q1

q2

q3

q4

d1 d2 d3 d4 w1

w2

w3

w4

h

1 1

Figure 9. Constructed OT graph in Example 4.
20 of 34

Example 4: Consider again the SRTD instance of Example 4. Figure 9 shows the correspond-

ing ordered transaction graph that results when the ordering is imposed. Remov-

ing the OT edges gives the constructed IPC graph. Note that

the edges and introduced during construction are redundant in the OT graph due

to the paths and , respectively, that are imposed by the lin-

ear order and have delays of one or less.

5. The transaction partial order heuristic

The BFB technique does not take bus contention into consideration while scheduling the

transaction order. Instead, it tries to find a transaction order that will be close to or equal to the

associated self-timed schedule. However, we have demonstrated that in the presence of non-zero

IPC, the OT method can, in fact, perform significantly better than the ST method, and thus, more

direct consideration of OT execution is clearly worthwhile when scheduling transactions. For this

purpose, we propose in this section a heuristic, called the transaction partial order (TPO) algo-

rithm, that simultaneously takes IPC costs and the serialization effects of transaction ordering into

account when determining the transaction order. Note that OT edges added to the IPC graph can

only increase the MCM of the IPC graph, or leave the MCM unchanged. The MCM of the origi-

nal IPC graph therefore represents a lower bound on the achievable average iteration period. By

adding OT edges, we are effectively removing bus contention by making sure that no two com-

munication actors submit conflicting bus requests, and this generally increases the MCM of the

IPC graph. The TPO heuristic finds a transaction order on the basis that an OT edge that increases

the MCM of the IPC graph by a comparatively smaller amount should be given preference. There-

fore, to determine which communication actor should be scheduled first, we insert OT edges

between communication actors that are contending for the bus (during the transaction ordering

u1 u2 u4 u3, , ,()

u1 u2,() u2 u4,() u4 u3,() u3 u1,(), , ,

u1 u2,() u3 u4,()

u1 u2,()() u3 u1,() u1 u2,() u2 u4,(), ,()
21 of 34

process), and calculate the corresponding MCM of the IPC graph. Actors whose corresponding

MCMs are more favorable under such an evaluation are scheduled earlier in the transaction order.

More specifically, a partial order of the communication (send and receive) actors is first

computed from the IPC graph : the transaction partial order (TPO) graph is com-

puted by first deleting all edges in that have nonzero delays, and then deleting all of the

computation actors.

Example 5: The transaction partial order graph computed from the IPC graph of Figure 2 is

illustrated in Figure 10. Notice that all the dependencies imposed by the IPC graph are retained in

, but only for the communication actors.

The heuristic proceeds by considering — one by one — each vertex of that has no

input edges (vertices in the TPO graph that have no input edges are called ready vertices) as a

candidate to be scheduled next in the transaction order. Interprocessor edges are drawn from each

candidate vertex to all other ready vertices in , and the corresponding MCM is measured. The

candidate whose corresponding MCM is the least when evaluated in this fashion is chosen as the

Gipc GTPO

Gipc

GTPO

5s1

2r1

4s1

4s2

4s3

7r1

8r1

9r1

Figure 10. TPO Graph in Example 5.

GTPO

Gipc
22 of 34

next vertex in the ordered transaction, and deleted from . This process is repeated until all

communication actors have been scheduled into a linear ordering. A pseudocode specification of

the TPO heuristic is given in Figures 11-13.

The algorithm makes sense intuitively since the dependencies imposed by the edges

drawn from the candidate vertices will remain when the transaction ordering is enforced.

These edges represent constraints in addition to the interprocessor edges that are already present

in and thus, they can only increase the MCM or leave the MCM unchanged. Since we are

interested in minimizing the MCM, we choose candidate vertices that increase the MCM by the

least possible amounts. Thus, the algorithm follows a greedy strategy in choosing vertices, but it

explicitly takes communication serialization and IPC costs into account

.

GTPO

O

Gipc

Function Choose-Communication-Actor
Input an IPC graph , a TPO graph and a list of actors ReadyList
Output a communication actor

For
For

If
e = G.addedge
temp.addedge(e)

end if
end for
criteria[] =

end for
For

G.delete
end for

return

G V E,()= GTPO
v

x ReadyList∈
y ReadyList∈

x y≠
x y,()

x MCM G()

e temp∈
e()

v min criteria x(){ }=
v

Figure 11. Function to choose the next communication actor in the transaction order.
23 of 34

Example 6: When we apply the TPO heuristic to the IPC graph of Figure 2, the schedule we

obtain is illustrated by the Gantt chart of Figure 4. The corresponding OT graph is illustrated in

Figure 14.

The OT edges corresponding to the actors that have already been scheduled are added as

the heuristic proceeds since they represent the schedule of the bus, and hence, make the heuristic

more accurate for the later stages of the transaction order. The maximum number of nodes in the

ready list at any given instant is (where is the number of processors). The complexity of the

algorithm is thus since the complexity of computing the MCM of a graph

is .

The edge of the transaction order that connects the last communication actor in the order-

ing with the first one has a delay of unity (to represent the transition to the next graph iteration).

We can improve the performance of the TPO algorithm by introducing this edge at the beginning

because it will give a more accurate estimate of the MCM in choosing vertices later as the heuris-

tic proceeds. Under this modification, the heuristic proceeds as before, except that the “last” (unit-

delay) transaction ordering edge is drawn at the beginning. Since has a maximum of

Function Initialize
Input an IPC graph

compute from
For

mark[v] = FALSE
If indegree(v) ==0

ReadyList.append(v)
end if

end for

G

GTPO G
v G∈

Figure 12. Function to initialize data structures called by the TPO function.

P P

O P V 2 EOT() V E,()

O V E()

GTPO P
24 of 34

communication actors that can be scheduled last in the transaction order, the modified heuristic is

repeated for each of these candidate communication actors that can be scheduled in the end, and

the best solution that results is selected. This increases the complexity of the algorithm by a factor

of to .

Function TPO-heuristic
Input an IPC graph
Output a linear list of communication actors LinearList

Initialize(
complete = FALSE
first = TRUE
while not (complete)

 = choose-communication-actor(
mark[v] = TRUE
LinearList.append(v)
If not (first)

G.addedge

end if
first = FALSE
For

flag = TRUE
For

If mark[s] = FALSE
flag = FALSE

end if
end for
If flag == TRUE

ReadyList.append(u)
end if

end for
If (ReadyList.empty) == TRUE)

complete = TRUE
end if

end while
return LinearList
end Function

G V E,()=

G()

v G GTPO ReadyList, ,()

w v,()
w v=

u v u,() E∈{ }∈

s s u,() E∈{ }∈

Figure 13. Pseudocode for TPO heuristic.

P O P2 V 2 EOT()
25 of 34

6. Genetic algorithm for transaction scheduling

Since the transaction ordering problem is intractable, we are unable to efficiently find

optimal transaction orders on a consistent basis. We have implemented a branch and bound strat-

egy to explore the search space comprehensively, but this technique requires excessive amounts

of time for graphs that have significant numbers of IPC edges. To develop an alternative to this

branch and bound approach, and the TPO heuristic, we have implemented a genetic algorithm

(GA) to search for the best transaction order. The GA exploits the increased tolerance for compile

2r1

4

4s2

4s3

7r1

8r1

3

7

15

9

5

5

4

9

6

3

4

6

5

3

5

5

1

1

1

2

3

91

2

3

4s1

6

5

5s1

7

8

9r1

9

1

Proc 1 Proc 2 Proc 3

Figure 14. OT graph obtained by applying TPO heuristic in Example 6.
26 of 34

time that is available for many embedded applications [14], and can leverage the TPO heuristic by

incorporating its solution in the “initial population.”

In our GA formulation, candidate transaction orders are encoded using the matrix-based

sequence-encoding method described in [7]. Using this method, the partial order of the communi-

cation actors is converted into a precedence matrix and randomly completed to yield a random

transaction order that is valid. Mutation is carried out by swapping rows and columns, and recom-

bination is performed using the intersection operator explained in [7]. The intersection operator

takes subsequences that are common among the parents by taking the boolean “and” of the two

parent matrices to form the “offspring,” and the undefined part is randomly completed.

A pseudocode sketch of the GA is shown in Figure 15. For details on the underlying GA

concepts (e.g., tournament selection), we refer the reader to [1]. The mutation step takes

time multiplied by the number of swaps carried out since each time we have to check whether the

swap was valid by comparing it with the partial boolean matrix corresponding to the trans-

Function TransOrderingGA
Input an IPC graph
Output a linear list of communication actors LinearList

compute from
convert to boolean matrix
generate initial population by randomly completing
For j = 1 to NoIterations

For i = 1 to PopulationSize
 = mutate*

 = recombine

.FitnessValue = evaluate
end for

 = tournament_selection
end for

G V E,()=

GTPO G
GTPO MTPO

M MTPO

Pi Mi()

Ri Pi 1– Pi,()

Ri Ri G,()

M R M,()

Figure 15. Pseudocode for our GA approach to transaction ordering.

O V 2()

MTPO
27 of 34

action partial order graph . The recombination step takes time, and the evaluation

step takes time. The overall complexity of each iteration is also influenced by the

population size and the overhead involved in generating random numbers.

7. Dynamic reordering

Once we obtain a transaction order (e.g., using the TPO heuristic or the GA approach

defined in Section 6), it is possible to swap the position of consecutive communication actors in

the transaction order as long as the new positions do not violate the dependencies imposed by the

transaction partial order. This method has the advantage that it cannot degrade the transaction

order since we can discard any solution that is worse. The concept is similar to dynamic variable

reordering used in OBDD’s (Ordered Binary Decision Diagrams) [17]. We have implemented an

adaptation to ordered transaction scheduling, called dynamic transaction reordering (DTR), of the

Sifting Algorithm introduced by Rudell [21], and have observed that from DTR, we consistently

obtain improvements in the iteration period, regardless of the method used to find the transaction

order.

8. Results

Experiments were carried out to compare the ST method and the OT method, and to mea-

sure the performance of the TPO, GA, and DTR heuristics in finding transaction orders. These

heuristics were implemented in C/C++ using the LEDA [16] framework for fundamental graph-

theoretic data structures and algorithms. The benchmarks are standard DSP applications that have

been scheduled using the classic HLFET algorithm [8] with straightforward extensions to incor-

porate IPC costs.

The IPC graphs are fairly complicated, ranging from between 50-150 nodes, and the num-

GTPO O V 2()

O V EOT()
28 of 34

bers of processors involved range from 2 to 8. The examples fft1, fft2, and fft3 result from three

representative schedules for Fast Fourier Transforms based on examples given in [15]; karp10 is a

music synthesis application based on the Karplus Strong algorithm in 10 voices; and qmf4 is a 4

channel multi-resolution QMF filter bank for signal compression.

In the simulation of the ST schedule, we ignore the overhead of synchronization so as to

give us a worst-case comparison with the OT schedule. In practice, of course, synchronization has

nonzero cost, and thus, depending on the actual synchronization overhead in the target architec-

ture, the benefit of the OT schedules examined will be even more that what the results here dem-

onstrate. Thus, our analysis in this section gives a lower bound on the improvement we can expect

using the OT implementation strategy in conjunction with our proposed transaction ordering tech-

niques.

Table 1 compares the performance (iteration period) of the ST and the OT schedules.

Here, the average iteration period () of the OT schedule is obtained by taking the best perfor-

mance using the algorithms proposed in Sections 5-7, and denotes the average iteration

period of the corresponding ST schedule. In each of the cases, we see that the OT strategy can

outperform the ST strategy, and that this holds even though we are ignoring synchronization

costs, which gives us a very optimistic view of the performance under ST execution.

Table 1. Comparison of ST and OT schedules.

Application

fft1 263 245

fft2 312 300

fft3 263 245

karp10 312 308

qmf4 147 140

TOT

TST

TST TOT
29 of 34

Table 2 gives us a comparison between the different heuristics in finding transaction

orders. Each entry is the iteration period when the transaction order found by the heuristic is

enforced. Column 2 shows the iteration period when a randomly-generated transaction order is

enforced. From the table, we can conclude that all the heuristics work fairly well compared to the

random transaction order. The TPO heuristic for which the results are shown is the modified ver-

sion that inserts the unit-delay edge beforehand. This consistently gives us a slight improvement.

Generally, the TPO heuristic works better than the BFB technique — especially for fft1 and fft3 —

and the heuristic that combines the TPO heuristic and DTR performs best (even better than the

GA which, takes significantly more time to execute). The GA was implemented with a population

size of 100 and the number of iterations was set to 1000. The GA for the experiments that we tried

generally stabilized before the 1000 iteration limit was reached.

When we use the transaction ordering obtained by the TPO heuristic combined with DTR

in the initial population of the GA, we achieve the best results since we simultaneously obtain the

benefits of all three approaches. The results are shown in Table 3.

Table 2. Comparison of algorithms.

Application

fft1 392 280 245 255 245

fft2 395 340 320 300 300

fft3 390 300 255 255 245

karp10 482 312 309 308 309

qmf4 196 148 145 140 145

Trandom TBFB TTPO TGA TTPO+DTR
30 of 34

9. Conclusions

We have demonstrated that in the presence of accurate estimates for actor execution times,

the ordered transaction method — which is superior to the self-timed method in its predictability,

and its total elimination of synchronization overhead — can significantly outperform self-timed

implementation, even though ordered transaction implementation offers less run-time flexibility

due to a fixed ordering of communication operations. We have also shown that in the presence of

non-zero IPC costs, finding an optimal transaction order is an NP-complete problem, and we have

developed a variety of heuristic techniques to find efficient transaction orders. These techniques

include a low-complexity, deterministic heuristic for rapid design space exploration, and a genetic

algorithm for exploiting extra compile time when generating final implementations. Useful direc-

tions for further work include integrating transaction ordering considerations into the scheduling

process, and the exploration of hybrid scheduling strategies that can combine ordered transaction,

self-timed, and fully-static strategies in the same implementation based on subsystem characteris-

tics.

10. References

[1] T. Back, U. Hammel, and H-P Schwefel, “Evolutionary computation: Comments on the history

Table 3. Results when the GA is applied to the TPO heuristic in conjunction
with DTR.

Application

fft1 245

fft2 295

fft3 245

karp10 305

qmf4 140

TTPO+DTR+GA
31 of 34

and current state,” IEEE Transactions on Evolutionary Computation, 1(1):3-17, 1997.

[2] S. Banerjee, T. Hamada, P. M. Chau and R. D. Fellman, “Macro Pipelining Based Scheduling

on High Performance Heterogeneous Multiprocessor Systems,” IEEE Transactions on Signal Pro-

cessing, Vol. 43, No. 6, pp 1468-1484, June, 1995.

[3] S. S. Bhattacharyya, S. Sriram and E. A. Lee, “Minimizing Synchronization Overhead in Stat-

ically Scheduled Multiprocessor Systems,” Proceedings of the International Conference on Appli-

cation Specific Array Processors, July, 1995.

[4] S. S. Bhattacharyya, S. Sriram and E. A. Lee. “Latency-constrained Resynchronization for

Multiprocessor DSP Implementation,” Proceedings of the International Conference on Applica-

tion Specific Systems, Architectures and Processors, August, 1996.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs,

Kluwer Academic Publishers, 1996.

[6] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for simulating

and prototyping heterogeneous systems,” International Journal of Computer Simulation, Vol. 4,

pp. 155-182, Jan. 1994.

[7] B. R. Fox and M. B. McMahon, “Genetic Operators for Sequencing Problems”, G. Rawlins,

Foundations of Genetic Algorithms, Morgan Kaufman Publishers Inc., 1991.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman and Company, New York, 1999.

[9] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations Research, Vol. 9, No.

6, pp. 841-848, Nov. 1961.
32 of 34

[10] S. Y. Kung and P. S. Lewis and S. C. Lo, “Performance Analysis and Optimization of VLSI

Dataflow Array,” Journal of Parallel and Distributed Computing, pp. 592-618, 1987.

[11] E. A. Lee and J. C. Bier, “Architectures for Statically Scheduled Dataflow,” Journal of Par-

allel and Distributed Computing, Vol. 10, pp. 333-348, Dec. 1990.

[12] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs

for Digital Signal Processing,” IEEE Trans. on Computers, Vol. C-36, No. 2, Feb. 1982.

[13] E. A. Lee and S. Ha, “Scheduling strategies for Multiprocessor real-time DSP,” Proceedings

of the Globecom Conference, Dallas, Texas, pp. 1279-1283, Nov. 1989.

[14] P. Marwedel and G. Goossens, Code Generation for Embedded Processors, Kluwer Academ-

ic Publishers, 1995.

[15] C. L. McCreary, A. A. Kahn, J. J. Thompson and M. E. McArdle, “A Comparison of Heuris-

tics for Scheduling DAGS on Multiprocessors,” International Parallel Processing Symposium,

1994.

[16] K. Mehlhorn and S. Naher and M. Seel and C. Uhrig, The LEDA User Manual, Max-Planck-

-Institut for Informatik, Saarbrucken, Germany, Version 3.7.

[17] G. De. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

[18] K. Parhi and D. G. Messerschmitt, “Static Rate Optimal Scheduling of Iterative Dataflow Pro-

grams via Optimum Folding,” IEEE Transactions on Computers, Vol. 40, No. 2, pp. 178-194, Feb.

1991.

[19] J. L. Peterson, Petri Net Theory and Modelling of Systems, Prentice-Hall Inc., Englewoods

Cliffs, New Jersey, 1981.
33 of 34

[20] R. Reiter, “Scheduling Parallel Computations,” Journal of the Association for Computing Ma-

chinery, Vol. 15, No. 4, pp. 590-599, Oct. 1968.

[21] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” IEEE

Transactions on Computer Aided Design, 1993.

[22] G. C. Sih, “Multiprocessor Scheduling to account for Interprocessor Communication,” Ph.D.

Thesis, Memorandum No. UCB/ERL M91/29, Electronics Research Laboratory, University of

California at Berkeley, April, 1991.

[23] S. Sriram and E. A. Lee, “Determining the Order of Processor Transactions in Statically

Scheduled Multiprocessors,” Journal of VLSI Signal Processing, pp. 207-220, 1997.

[24] S. Sriram, “Minimizing Communication and Synchronization Overhead in Multiprocessors

for Digital Signal Processing,” Ph.D. Thesis, Department of Electrical Engineering and Computer

Sciences, University of California at Berkeley, 1995.
34 of 34

	Contention-conscious Transaction Ordering in Embedded Multiprocessors Systems
	Mukul Khandelia, and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland, College Park
	Abstract
	1. Background
	1.1 Scheduling dataflow graphs
	1.2 Terminology and notation
	, (1)
	. (2)
	Figure 1. An example of an application graph and an associated self-timed schedule. The numbers o...
	. (3)
	, (4)

	2. Previous work
	3. Comparison of self-timed and ordered transaction strategies
	Figure 2. IPC graph constructed from application graph of Figure 1.
	Example 1: To illustrate how an ST schedule might perform worse than an OT schedule, consider the...
	Figure 3. Gantt Chart for ST schedule in Example 1.
	Figure 4. Gantt Chart for OT schedule in Example 1.
	Figure 5. IPC graph for Example 2.

	Example 2: Consider the IPC graph of Figure 5, and suppose that Actor 1 has a worst-case executio...
	Figure 6. Gantt Chart for ST schedule when exec(1)=21.
	Figure 7. Gantt Chart for ST schedule with exec(1)=19.

	4. Finding optimal transaction orders
	Definition 1: Given an IPC graph , the associated non-iterative inter-processor communication (NI...
	Definition 2: Given an NIPC graph , and an ordering , the corresponding non-iterative ordered tra...
	Definition 3: The non-iterative transaction ordering problem is defined as follows. Given an NIPC...
	Definition 4: (The SRTD problem). Given an instance set of tasks, and for each task , a length (d...
	Theorem 1: The non-iterative transaction ordering problem is NP-complete.
	Example 3: Suppose that we are given an instance of the SRTD problem with task set ; and respecti...
	Figure 8. NOT Graph constructed in Example 3.

	Definition 5: The iterative transaction ordering problem (also called the transaction ordering pr...
	Theorem 2: The iterative transaction ordering problem is NP-complete.
	Figure 9. Constructed OT graph in Example 4.

	Example 4: Consider again the SRTD instance of Example 4. Figure 9 shows the corresponding ordere...

	5. The transaction partial order heuristic
	Example 5: The transaction partial order graph computed from the IPC graph of Figure 2 is illustr...
	Figure 10. TPO Graph in Example 5.
	Figure 11. Function to choose the next communication actor in the transaction order.
	Figure 12. Function to initialize data structures called by the TPO function.
	Figure 13. Pseudocode for TPO heuristic.

	Example 6: When we apply the TPO heuristic to the IPC graph of Figure 2, the schedule we obtain i...
	Figure 14. OT graph obtained by applying TPO heuristic in Example 6.

	6. Genetic algorithm for transaction scheduling
	Figure 15. Pseudocode for our GA approach to transaction ordering.

	7. Dynamic reordering
	8. Results
	Table 1. Comparison of ST and OT schedules.
	Table 2. Comparison of algorithms.
	Table 3. Results when the GA is applied to the TPO heuristic in conjunction with DTR.

	9. Conclusions
	10. References
	[1] T. Back, U. Hammel, and H-P Schwefel, “Evolutionary computation: Comments on the history and ...
	[2] S. Banerjee, T. Hamada, P. M. Chau and R. D. Fellman, “Macro Pipelining Based Scheduling on H...
	[3] S. S. Bhattacharyya, S. Sriram and E. A. Lee, “Minimizing Synchronization Overhead in Statica...
	[4] S. S. Bhattacharyya, S. Sriram and E. A. Lee. “Latency-constrained Resynchronization for Mult...
	[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs, Kl...
	[6] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for simulating a...
	[7] B. R. Fox and M. B. McMahon, “Genetic Operators for Sequencing Problems”, G. Rawlins, Foundat...
	[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP- Com...
	[9] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations Research, Vol. 9, No. ...
	[10] S. Y. Kung and P. S. Lewis and S. C. Lo, “Performance Analysis and Optimization of VLSI Data...
	[11] E. A. Lee and J. C. Bier, “Architectures for Statically Scheduled Dataflow,” Journal of Para...
	[12] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs for D...
	[13] E. A. Lee and S. Ha, “Scheduling strategies for Multiprocessor real-time DSP,” Proceedings o...
	[14] P. Marwedel and G. Goossens, Code Generation for Embedded Processors, Kluwer Academic Publis...
	[15] C. L. McCreary, A. A. Kahn, J. J. Thompson and M. E. McArdle, “A Comparison of Heuristics fo...
	[16] K. Mehlhorn and S. Naher and M. Seel and C. Uhrig, The LEDA User Manual, Max-Planck- -Instit...
	[17] G. De. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
	[18] K. Parhi and D. G. Messerschmitt, “Static Rate Optimal Scheduling of Iterative Dataflow Prog...
	[19] J. L. Peterson, Petri Net Theory and Modelling of Systems, Prentice-Hall Inc., Englewoods Cl...
	[20] R. Reiter, “Scheduling Parallel Computations,” Journal of the Association for Computing Mach...
	[21] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” IEEE Transactio...
	[22] G. C. Sih, “Multiprocessor Scheduling to account for Interprocessor Communication,” Ph.D. Th...
	[23] S. Sriram and E. A. Lee, “Determining the Order of Processor Transactions in Statically Sche...
	[24] S. Sriram, “Minimizing Communication and Synchronization Overhead in Multiprocessors for Dig...

